f08 — Least-squares and Eigenvalue Problems (LAPACK) f08hcc

NAG C Library Function Document
nag_dsbevd (f08hcc)

1 Purpose

nag_dsbevd (f08hcc) computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
band matrix. If the eigenvectors are requested, then it uses a divide and conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal-Walker—Kahan variant of the QL or QR algorithm.

2 Specification

void nag_dsbevd (Nag_OrderType order, Nag_JobType job, Nag_UploType uplo,
Integer n, Integer kd, double ab[], Integer pdab, double w[], double z[],
Integer pdz, NagError *fail)

3 Description

nag_dsbevd (f08hcc) computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
band matrix A. In other words, it can compute the spectral factorization of A as

A= ZANZ",

where A is a diagonal matrix whose diagonal elements are the eigenvalues A;, and Z is the orthogonal
matrix whose columns are the eigenvectors z;. Thus

Az, =Nz, 1=1,2,...,n.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: job — Nag JobType Input
On entry: indicates whether eigenvectors are computed as follows:
if job = Nag_DoNothing, only eigenvalues are computed;
if job = Nag_EigVecs, eigenvalues and eigenvectors are computed.

Constraint: job = Nag_DoNothing or Nag_EigVecs.

3: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored as follows:

[NP3645/7] f08hce. 1

f08hcc NAG C Library Manual

if uplo = Nag_Upper, the upper triangular part of A is stored;
if uplo = Nag_Lower, the lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

4: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

5: kd — Integer Input

On entry: k, the number of super-diagonals of the matrix A if uplo = Nag_Upper, or the number of
sub-diagonals if uplo = Nag_Lower.

Constraint: kd > 0.

6: ab[dim| — double Input/Output
Note: the dimension, dim, of the array ab must be at least max(1, pdab x n).

On entry: the n by n symmetric band matrix A. This is stored as a notional two-dimensional array
with row elements or column elements stored contiguously. Just the upper or lower triangular part
of the array is held depending on the value of uplo. The storage of elements a;; depends on the
order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ab[k+ i —j+ (j — 1) x pdab], for i = 1,...,n and
Jj=r1,...,min(n,i+ k);

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ab[i — j+ (j — 1) x pdab], for i = 1,...,n and
j=max(1l,i —k),...,1;

if order = Nag_RowMajor and uplo = Nag_Upper,
a;; is stored in ab[j — i+ (i — 1) x pdab], for i = 1,...,n and
Jj=r1,...,min(n,i+ k),

if order = Nag_RowMajor and uplo = Nag_Lower,
a;; is stored in ab[k 4 j — i+ (i — 1) x pdab], for i = 1,...,n and
j=max(1,i —k),...,1.

On exit: A is overwritten by the values generated during the reduction to tridiagonal form. The
storage details depend on the input values of the parameters order and uplo.
7: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab > kd + 1.

8: w[dim] — double Output
Note: the dimension, dim, of the array w must be at least max(1,n).

On exit: the eigenvalues of the matrix A in ascending order.

9: z[dim] — double Output

Note: the dimension, dim, of the array z must be at least
max(1,pdz x n) when job = Nag_EigVecs;
1 when job = Nag_DoNothing.

f08hce.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08hcc

10:

6

If order = Nag_ColMajor, the (4, j)th element of the matrix Z is stored in z[(j — 1) x pdz + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix Z is stored in z[(i — 1) x pdz + j — 1].

On exit: if job = Nag_EigVecs, z is overwritten by the orthogonal matrix Z which contains the
eigenvectors of A. The ith column of Z contains the eigenvector which corresponds to the
eigenvalue w[i].

If job = Nag_DoNothing, z is not referenced.

pdz — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.

Constraints:
if job = Nag_EigVecs, pdz > max(1,n);
if job = Nag_DoNothing, pdz > 1.
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, kd = (value).
Constraint: kd > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdz = (value).
Constraint: pdz > 0.

NE_INT 2

On entry, pdab = (value), kd = (value).
Constraint: pdab > kd + 1.

NE_ENUM_INT 2

On entry, job = (value), n = (value), pdz = (value).
Constraint: if job = Nag_EigVecs, pdz > max(1,n);
if job = Nag_DoNothing, pdz > 1.

NE_CONVERGENCE

The algorithm failed to converge, (value) elements of an intermediate tridiagonal form did not
converge to zero.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

[NP3645/7] f08hcc.3

fO08hcce NAG C Library Manual

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix A 4+ E, where
1E[l, = O(e)[| Al

and € is the machine precision.

8 Further Comments

The complex analogue of this function is nag_zhbevd (f08hqc).

9 Example

To compute all the eigenvalues and eigenvectors of the symmetric band matrix A, where

1.0 2.0 3.0 0.0 0.0
20 2.0 3.0 40 0.0
A=130 3.0 30 40 5.0
0.0 40 4.0 4.0 5.0
0.0 00 50 50 50

9.1 Program Text

/* nag_dsbevd (f08hcc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, k, kd, n, pdab, pdz, w_len;
Integer exit_status=0;
NagError fail;
Nag_JobType job;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2], job_char([2];
double *ab=0, #*w=0, #*z=0;

#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I,J) abl[(J-1)x*pdab + k

+
—
I
g
I
=

#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]
order = Nag_ColMajor;

#else

#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]

#define AB_LOWER(I,J) abl[(I-1)*pdab + k
order = Nag_RowMajor;
#endif

+
g
I
H
I
=

INIT_FAIL(fail);

f08hcc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08hcc

Vprintf ("f08hcc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*[*\n] ");
Vscanf ("$1d%1ds+*["\n] ", &n, &kd);
pdab = kd + 1;
pdz = n;
w_len = n;
/* Allocate memory */
if (!(ab = NAG_ALLOC(pdab * n, double)) ||
I (w = NAG_ALLOC(w_len, double)) ||
! (z = NAG_ALLOC(n * n, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read whether Upper or Lower part of A is stored =*/
Vscanf (" ' %1s ’'%*["\n] ", uplo_char);
if (*(unsigned char *)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char #*)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
/* Read A from data file x/
k = kd + 1;
if (uplo == Nag_Upper)

{
for (l = 1; 1 <= n; ++i)
{
for (j = i; j <= MIN(i+kd,n); ++3)
Vscanf ("%1f", &AB_UPPER(i,j));
}
Vscanf ("$x[*\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (] = MAX(1l,i-kd);] <= i; ++j)
Vscanf ("$1f", &AB_LOWER(i,j));
}
Vscanf ("s*[*\n] ");
}

/* Read type of job to be performed x/
Vscanf (" ' %1s ’'s*["\n] ", job_char);

if (*(unsigned char #*)job_char == 'V’)
job = Nag_EigVecs;
else

job = Nag_DoNothing;
/* Calculate all the eigenvalues and eigenvectors of A */
f08hcc(order, job, uplo, n, kd, ab, pdab, w, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from fO08hcc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3

/* Print eigenvalues and eigenvectors */
Vprintf (" Eigenvalues\n");
for (i = 0; 1 < n; ++1)
Vprintf (" %8.41f", wl[il]);
Vprintf ("\n\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, "Eigenvectors", 0, &fail);

[NP3645/7] fO08hcce.5

f08hcc

if (fail.co

{

Vprintf ("Error from x04cac.\n%s\n",

de

!= NE_NOERROR)

exit_status =

goto EN

}
END:

D;

1;

if (ab) NAG_FREE (ab) ;
if (w) NAG_FREE (w) ;
if (z) NAG_FREE(z);
return exit_status;

9.2 Program Data

f08hcc Example Program Data

5 2
L

O OO ~

1
2
3

S w N
[oNeoNe)

[Ava

U W

O OO

[S2 1N
[oNe)

9.3 Program Results

fail.message) ;

:Values of N and KD
:Value of UPLO

:End of matrix A

:Value of JOB

fO08hcc Example Program Results

Eigenvalues

-3.2474 -2.6633

Eigenvectors
1
0.0394
0.5721
L4372
-0.4424
0.5332

g w N
|
(@)

-0.
0.
0.

-0.

-0.

6238
2575
5900
4308
1039

1.7511

.5635
.3896
.4008
.5581
.2421

4.1599

lcNoNoNoNe]

.5165
.5955
.1470
.0470
.5956

cNoNoNoNe]

14.9997

.1582
.31e61
.5277
.5523
.5400

NAG C Library Manual

JO8hcc.6 (last)

[NP3645/7]

	f08hcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	uplo
	n
	kd
	ab
	pdab
	w
	z
	pdz
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_CONVERGENCE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

